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Abstract—Payment channel networks (PCNs) offer a crucial
solution to the scalability challenges of blockchain-based trans-
action systems. However, most existing PCN routing protocols
employ a ‘“‘guess-and-check” approach, which undermines their
transaction success rate and efficiency. In this paper, we propose
a routing protocol named RCS, based on a novel “Refined
Confirm-and-Send” approach. Utilizing PCN topology statistics,
RCS performs a refined probing of possible transaction paths
and verifies whether a path has sufficient available balance before
executing the transaction through it. This method effectively im-
proves the transaction success rate while maintaining restrained
overhead. Additionally, to address users’ privacy concerns, we
design a privacy-preserving version of RCS, named RCS+. RCS+
uses secure comparisons to identify paths with sufficient funds
without disclosing channel balances or transaction amounts.
Extensive simulations with real-world and synthetic datasets
demonstrate that RCS and RCS+ outperform existing state-
of-the-art protocols. RCS and RCS+ achieve a 10% higher
transaction success rate compared to the Shortest Path approach,
which serves as the core of Lightning Network’s current routing
mechanism. In terms of overhead, RCS maintains the lowest
cost among all tested protocols, e.g., only 20% of the Flash
protocol. While RCS+ incurs marginally higher overhead due
to its enhanced privacy guarantees, its cost remains just 30%
of Flash’s overhead. Furthermore, RCS/RCS+ exhibits robust
adaptability to dynamic changes in PCN topologies, ensuring
scalability as the network evolves.

Index Terms—Payment Channel Network, Routing Protocol,
Secure Comparison, Privacy

I. INTRODUCTION

The payment channel networks (PCN), e.g., the Lightning
Network [1] for Bitcoin and the Raiden Network [2] for
Ethereum, is an important solution to address the notorious
scalability problem of blockchain-based cryptocurrency sys-
tems [3-5].

A PCN consists of a network of payment channels, each
established by two users who deposit initial funds into a jointly
managed address on the blockchain. Subsequent transactions
between the two users are only “recorded” off the blockchain
by locally updating their channel balances. On-chain opera-
tions are required only when closing the channel, at which
point the final balances are globally broadcast and written
to the blockchain. By avoiding recording every transaction
on-chain, the PCN minimizes the costly on-chain operations,
thereby can significantly reduce the burden on the blockchain
and improve the blockchain transaction system’s overall scal-
ability and efficiency.

In PCNs, the maximum transaction amount between two
users sharing a direct channel is constrained by the chan-
nel’s current balance. For users without a direct channel,
transactions must be routed through a multi-hop path of
interconnected channels, each requiring sufficient liquidity
to forward the payment. However, identifying such a valid
path presents a significant challenge, as intermediate channel
balances, which are dynamically updated and not publicly
observable, are controlled by third-party nodes or users.

At present, most PCN routing protocols [6—-13] employ a
“guess-and-check” strategy. The sender (or paying user) uses
the PCN’s topology and channels’ initial balances (which
were broadcast and recorded on the blockchain during channel
establishments) to estimate potential paths to the receiver
(or payee user), and randomly selects one to attempt the
transaction. However, because the balances of channels along
the path constantly change, there is a substantial risk that the
selected path could fail due to insufficient funds at the time
of the transaction, resulting in a low transaction success rate.
Moreover, when a transaction fails, the Hash Time-Locked
Contract (HTLC) protocol’s security mechanism temporarily
locks the funds along the path until a timeout expires [14].
Although the sender can retry with alternative paths after funds
are released, this process introduces additional delays, further
degrading the overall efficiency of PCN transactions.

For instance, the LND routing protocol, currently deployed
in the Lightning Network, adopts the “guess-and-check” strat-
egy and attempts transactions along the shortest path [15].
If the balance of any channel along the shortest path is
insufficient, the transaction fails. The sender then deletes these
channels and recalculates the shortest path. This process is
repeated until the transaction succeeds or a preset timeout
event happens. Empirical studies show that LND has a low
transaction success rate [11]. Each failed transaction triggers
the HTLC protocol, which locks the associated funds along the
path for an extended period, usually up to 6 hours or more [15].

A number of routing protocols [16—19] adopt a different
strategy called “confirm-and-send”, which determines the path
that has sufficient funds before using it for transactions. This
approach prevents transaction failures caused by insufficient
channel balances, thereby avoiding fund lock-ups along the
path and improving the transaction success rate. However,
verifying fund availability on each potential path introduces
substantial overhead, severely impacting efficiency. Achieving
a high success rate with low overhead is the core challenge for
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routing protocols adopting the “confirm-and-send” strategy.

In this paper, we propose a novel confirm-and-send strategy
called “refined confirm-and-send”. Calculating the maximum
transaction amount for all paths potential for each transaction
is often impractical. “Refined confirm-and-send” also verifies
balance sufficiency on the path before tempting the transaction,
but does not run verifications for all potential paths. Instead,
it selects paths based on network topology statistics. Based on
this “refined confirm-and-send”, we design the RCS routing
protocol, which achieves a high transaction success rate in
PCNs with acceptable overhead.

Specifically, RCS calculates the maximum transaction
amount only for short paths whose length does not exceed
k, where k is determined based on the PCN’s topology and
can be adaptively tuned. By restricting path length, RCS sig-
nificantly reduces verification overhead while incurring only
a marginal decrease in success rate. This trade-off is justified
by the fact that longer paths, while offering more candidate
routes, generally exhibit lower success rates due to the bucket
principle—the well-known phenomenon where the maximum
transaction amount along a path is constrained by the channel
with the smallest balance. To further optimize efficiency, RCS
lets each sender maintain a routing table. When a transaction
is initiated, if the receiver does not exist in the routing table,
the sender probes to find all paths with a length [ (I < k).
These paths are then recorded in the routing table to avoid re-
searching them in future transactions between the same parties,
thus saving time. If the paths between the sender and receiver
exist in the routing table, the sender can randomly select one
and collaborate with the users along that path to calculate the
maximum transferable amount. This process continues until a
path with sufficient funds is found to complete the transaction.
In the rare event that no path exists between the sender and
receiver with a length not exceeding k or there are insufficient
funds in the all paths of length not exceeding k£, RCS can
temporarily adjust the value of k to find feasible paths.

When all intermediate nodes are willing to share plaintext
comparisons of transaction amounts and channel balances,
RCS can efficiently determines paths and improves success
rates. However, RCS has potential privacy risks, such as
repeated queries that may reveal balance information. To
address this, we propose RCS+, a privacy-preserving version
that protects user privacy while identifying valid paths.

In summary, we make the following contributions:

o We study the topology of real-world PCNs to understand

the path topology of cryptocurrency transactions.

o We design RCS, a novel routing protocol based on the
“refined confirm-and-send” strategy , which improves the
transaction success rate and network throughput while
keeping overhead small.

e« We design a secure path funds verification protocol
RCS+, a privacy-preserving version of RCS, effectively
protecting transaction amount privacy and available chan-
nel privacy in PCNs.

« We extend the simulator and implement RCS and RCS+.
Extensive simulations are conducted to evaluate their
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performance compared with state-of-the-art routing pro-
tocols. The results show that RCS and RCS+ achieve
a transaction success rate 10% higher than that of the
Shortest Path approach, the key algorithm in Lightning’s
currently deployed routing protocol. In terms of overhead,
RCS consistently incurs the lowest cost, only 20% of
Flash’s overhead—the highest among all protocols. Al-
though RCS+ has slightly higher overhead than RCS, it
still maintains a low cost at only 30% of Flash’s overhead.
« We simulate network evolution to evaluate the adaptabil-
ity of RCS and RCS+, demonstrating their effectiveness
in dynamic PCN environments.

The rest of the paper is organized as follows: Section II
provides background on PCN; Section III describes the RCS
routing protocol and RCS+ is presented in Section IV; Section
V details the experiments and performance evaluation; Section
VI reviews related work; and Section VII concludes this paper.

II. BACKGROUND
A. Payment Channel Network

The operation of opening a channel is performed on-chain.
To open a payment channel, two parties commit funds into
a 2-of-2 multisignature address, holding it in custody for a
fixed period [14]. The payment channel network is composed
of multiple such channels.

et
R S—

Fig. 1: Example diagram of payment channel network.

The payment channel network is represented as a directed
weighted graph G = (V, E) [20], where V represents the set
of network users and £ denotes the set of payment channels.
Each edge is bidirectional, with each direction having a
weight corresponding to the user’s balance in this channel.
These weights are updated dynamically as transactions occur,
reflecting changes in the channel balances. For example, u
and v are connected by the edge e = (u,v). The weight by,
denotes the balance of « in the channel C,,,, (Fig. 1). Similarly,
by, represents the balance of v in C,,,. The channel capacity
Cap of each edge is the total balance in both directions of the
channel, given by Capy, = byy + byy. The channel capacity
is fixed when the channel is established and recorded on the
blockchain, making it available to all network users.

Existing channels can also be closed through an on-chain
process. Once both parties resolve any outstanding disputes
and determine the allocation of funds, they can withdraw their
funds from the channel.

B. Payment Path

When a transaction occurs between two users, a path with
sufficient funds is required to complete it. It is impractical to
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establish a direct channel between every pair of users. Typi-
cally, users select an appropriate path that forwards payments
through intermediate nodes. As the transaction progresses, the
balance in the channels along the transaction path changes.
For example, Alice pays 3 satoshis to Bob through the Alice-
Carol-Bob path (Fig. 2(a)). To facilitate a clear analysis of how
the balances in each channel change during the transaction, we
temporarily disregard the fees charged by intermediate nodes
(a detailed fee model will be discussed in Section II-C). In this
case, two transactions occur: Alice to Carol and Carol to Bob.
The HTLC protocol [14] ensures the atomicity and security
of transactions: Carol receives funds from Alice if and only if
Bob successfully receives the funds from Carol. Additionally,
Bob can pay Alice by the Bob-Carol-Alice path.

Before Tx1:

Before Tx1:

Carol

(a) Without the fee model

(b) With the fee model

Fig. 2: Transactions conduction with intermediate nodes.

C. Payment Fees

In PCN, the fee model for intermediate nodes involves two
types of fees: the base fee Fj,s. and the fee rate r [21]. The
base fee is a fixed charge applied by intermediate nodes for
facilitating a transaction. And the fee rate specifies the fee
charged for each unit of currency transferred. The fee model
is described as follows:

F=Fpe+rxa (D

where a represents the transaction amount flowing through the
intermediate node.

Each payment channel has two distinct fee functions au-
tonomously pre-configured by the two users of the channel.
Fees are charged when funds flow into a channel from an
intermediary node, and only one fee function is applied based
on the transaction direction. As shown in Fig. 2(b), Alice
and Bob transact via the Alice-Carol-Bob path. In transaction
Tx1, Alice pays 3 satoshis to Bob, and the fee function
Fep = 0.0la + 0.05 of Carol in the Carol-Bob channel is
applied, resulting in a fee of 0.08 satoshis. Alice pays this fee
and sends 3.08 satoshis to complete the transaction. Similarly,
in Tx2, Carol’s fee function Fo4 = 0.03a+0.01 in the Carol-
Alice channel is applied.

It is crucial to highlight that the parameter a in the fee
function refers to the amount ultimately received by the re-
ceiver, rather than the initial amount sent by the sender (which
includes the fees of all intermediate nodes). Our protocol
follows this design paradigm for fee calculation.

174

III. ROUTING DESIGN

In this section, we describe the design of the RCS protocol
in detail. First, we discuss the core foundation of the RCS
protocol: the transaction path topology. Next, we explain
the path finding and transaction path selection in RCS. Path
finding consists of two stages: signal transmission and signal
return. During signal transmission, the transaction sender uses
Algorithm 1 to generate signals and send them to neighbors,
which then update and forward the signal by Algorithm 2.
During signal return, each node uses Algorithm 3 to process
and forward the returned signal. Once the sender receives
all signals and reconstructs the path, it collaborates with the
intermediate nodes along the path to calculate the maximum
transferable funds and finally select the transaction path.

A. Path Topology

We believe that the topological characteristics of PCNs can
inspire the design of routing protocols, thereby improving the
transaction success rate while reducing overhead.

The Lightning Network is a prominent application of PCNs,
characterized by a small number of high-degree nodes that
a large number of low-degree nodes tend to connect to.
The study in [21] analyzes the topological characteristics of
the current Lightning Network and finds that the network’s
diameter is 12 and the average distance between nodes is only
3.52, where the distance is defined as the shortest path between
two nodes. Additionally, reference [21] captures snapshots of
the Lightning Network over two years, exploring the evolution
of the topological characteristics. Despite the expansion of
the network, the average distance remains relatively stable.
The study in [22] investigates transaction characteristics in the
Lightning Network thoroughly by a simulator, finding that over
90% of successful transaction paths have a length of 4 or less.
Similar phenomena are also observed in other PCNs, such as
Ripple, where the lengths of successful transaction paths are
mostly in single digits and are less than a fixed value.

Based on these topology studies, we observe that most
transactions in PCNs are successfully completed through very
short paths. In our routing protocol design, the length of paths
found by RCS does not exceed k and k is determined based on
the parameter /,,,4,. In most cases k = [,;,4,, and only in rare
cases does it need to be temporarily adjusted. Our experiments
show that when l,,,,, = 4, RCS’s performance surpasses that
of other leading protocols (please refer to Section V-B for
details). This path finding method not only reduces the number
of paths to lower probing overhead but also ensures a high
transaction success rate.

B. Path Finding

For the deployed PCN, information about recent successful
transactions can be collected to determine [,,,,. When the
RCS protocol is applied to a brand new PCN, it is necessary
to first simulate transactions within the network, and the data
from these simulations can then be used to determine ;.
The value of [,,,, is broadcast to all nodes, and each node
in the network sets k to this value. In special cases, k for
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some transactions may be temporarily adjusted, and once the
path finding for that transaction is completed, k£ will be reset
t0 l;maz- This rare special case is described in detail in ITI-B.
The detailed protocol is as follows.

Each node maintains a routing table that records the paths
between itself as the sender and different receivers, with the
path length not exceeding k. If a receiver is not in the routing
table, RCS uses its probing-based path finding algorithm to
find paths and adds them to the routing table. Since payments
between the same sender and receiver are frequent [10], the
routing table can eliminate the frequent execution of the
probe-based path finding algorithm, thus reducing overhead.
The unique transaction path topology of PCNs ensures that
k remains small, preventing the routing table of each node
from becoming excessively large. Moreover, considering that
changes occur in PCNs, such as nodes disappearing and new
nodes joining, each node periodically clears its routing table
to update the latest paths. But this update is infrequent.

The probing-based path finding algorithm consists of two
phases: signal transmission and signal return.

« Signal transmission: the sender generates signals called
Tosignal and transmits them to its neighbors. Then these
neighbors update and forward the signal to find a path to
the receiver with a length no greater than k.

« Signal return: this phase involves two types of signals:
Backsignal and Nosignal. Backsignal is generated by the
receiver based on the received Tosignal and is returned
to the sender along the original path. Nosignal is used to
inform the sender of a path finding failure.

Algorithm 1 Tosignal generation

Input: sender s, receiver ¢, s.neighbors {oy, o2, ..., op}
1: base = random(Z,)
2: for o; in s.neighbors do

3:  create a new Tosignal p;

4 p;ad =base + i, pi.h =0, p;.s=s, pit=1t

5. for j=0to k do

6: pi-F[j].€ = NULL, p;.F[j].b =0, p;.F[j]l.r =0
7. end for

8  pi-flag=0

9:  send p; to the neighbor o;

10: end for

Although the Tosignal, Backsignal and Nosignal are differ-
ent names to distinguish signals between the transmission and
return processes, their fundamental form is identical, which
can be described as follows:

p = (id, h,s,t, F[], flag)

The variable id marks different paths, while £ is the number
of intermediate nodes traversed by the sender s to reach the
receiver t. Although PCN requires nodes to disclose the fee
functions of their channels, allowing senders to query them at
any time, nodes may adjust the fee functions dynamically in
practice [22]. This real-time modification of the fee functions
may prevent the nodes from querying the correct fee functions
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of the intermediate nodes in a timely manner. Therefore, we
use the array F[] to store the fee functions of the intermediate
nodes along the path. Each element F'[i] corresponds to the fee
function of the i-th intermediate node along the path probed
by p, containing three parameters: the node name &, the base
fee b and the fee rate r of its fee function. The value of flag
can be 0, 1 or -1, representing different signals. During the
signal transmission, the flag of Tosignal is 0. In the signal
return, the flag of Backsignal is 1 which indicates that a valid
path has been found, and the flag of Nosignal is -1, indicating
no valid path in the probing direction.

Signal transmission: The sender executes Algorithm 1 to
generate and initialize Tosignal. It first calculates the number
of neighbors n based on its payment channels and records the
neighbor set as {01, o2, ..., 0, }. Subsequently, the sender
generates n Tosignal p1, pa, ...p,, initializing each Tosignal
pi. Once the Tosignal p; is successfully initialized, the sender
dispatches p; to the corresponding neighbor o;.

Algorithm 2 Tosignal update and forwarding

Input: Tosignal p, current node «, a.neighbors {01, ..., o}
1: if & == p.t then

2:  generate a Backsignal ppock = 05 Poack-flag =1

3 return ppgck

4: end if

5. p.h ++, visitnodes = {p.s}

6: for i =0to p.h — 1 do

7. visitnodes = visitnodes U {p.F'[i].£}

8: end for

9: size = |a.neighbors — visitnodes|

10: if p.h > k or size == 0 then

11:  generate a Nosignal p,, = p, pno-flag = —1
12: return p,,

13: else

14 p.F[p.h].£ = the name of «

15 p.F[p.h].b = the base fee of «

16:  p.F[p.h].r = the fee rate of «

17:  for o in a.neighbors — visitnodes do

18: pj = p, pj.id = p.id + /" + random(size)
19: send p; to the neighbor o

20:  end for

21: end if

The node that receives Tosignal stores a tuple (p, w), where
w is the name of the node that sends p. This tuple is used
during the signal return. Storing large quantities of (p, w) is
neither practical nor necessary as they become obsolete once
path finding is completed. In the RCS protocol, each tuple
is deleted after a specified timeout. Then the node updates
the Tosignal by Algorithm 2. The update depends on two
conditions: whether the Tosignal has reached the receiver and
whether the current path length is less than k. If the current
node is the receiver, it generates a Backsignal ppqcr and
initiates the signal return. Otherwise, the node checks whether
the current path length is less than k. If the current path length
is equal to or greater than k, further extension would exceed
the maximum allowed length. In such a case, the current
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node immediately stops signal transmission and generates a
Nosignal p,,. The flag of p,, is set to -1, indicating that the
sender cannot reach the receiver via the current path. p,, is
then entered into the signal return.

Algorithm 3 Backsignal and Nosignal: update and forwarding

Input: Backsignal ppqcr, Nosignal p,,, current node a
1: if ppack-s == the name of « then

2 The transaction sender received the Backsignal ppqck

3 return

4: end if

5: Count the number sum of Backsignal received that have
with the same sender and receiver as py,

6: if sum > 0 then

7: discard pp,

8:  Identify the position ¢ of the last /* in ppqcr.id

9:  Remove all characters from the g-th position in ppack.id

10:  for Each tuple (p, w) stored by o do

11: if ppacr.id == p.id and ppgcr.s == p.s and ppock-t
== p.t then

12: nextnode = w

13: break

14: end if

15 end for

16:  Send ppgcr to nextnode

17: else if sum == 0 then

—

8:  Identify the position ¢ of the last /° in p,,.td

19:  Remove all characters from the g-th position in p;,,.id

20:  for Each tuple (p, w) stored by o do

21: if pno.id == p.id and p,,.s == p.s and py,.t ==
p-t then

22: nextnode = w

23: break

24: end if

25:  end for

26:  Send p,, to nextnode

27: end if

If the current node is neither the receiver nor has the path
reached the length limit k, it acts as an intermediate node.
To extend the path, the node updates p and forwards it to its
neighbors, excluding those already visited by p. For example,
if a Tosignal traverses Carol and Alice before reaching Bob,
whose neighbors are Alice, Carol, David, and Evin, then
according to Algorithm 2, Bob forwards the Tosignal only
to David, Evin. Consequently, the effective forwarding set has
a size of 2 instead of 4, meaning size is 2. If the current
node cannot continue forwarding Tosignal p (i.e., size = 0), a
Nosignal p,,, is generated to enter the signal return. Otherwise,
the current node updates p.F'[], which records its name and
fee function. The node generates size Tosignal {p1, ... psize}>
where each p; is sent to the corresponding neighbors o;.

As the Tosignal is continuously updated and transmitted, it
may eventually reach the transaction receiver, forming a topo-
logical path from the sender to the receiver. Once Backsignal
or Nosignal is generated, the signal return process begins.
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Signal return: Signal return consists of two types of
signals: Backsignal and Nosignal. During the return, each
node matches the received Backsignal with the stored Tosignal
to determine the correct channel for forwarding. Finally, the
sender receives the Backsignal and reconstructs the path to the
receiver based on its information. In contrast, Nosignal is usu-
ally discarded and does not need to be returned to the sender.

The nodes that receive Backsignal and Nosignal update and
forward signals by Algorithm 3 during the signal return. Upon
receiving Backsignal pp,ck, the node first check whether it is
the transaction sender by comparing its name with p.s. If they
match, the Backsignal has reached the sender. Otherwise, the
node updates the Backsignal and continues the return process.
The id of each channel is unique in each path for the same
sender-receiver pair. The tuple (p, w) stored in the signal
transmission and id can help identify the correct node that
Backsignal further returns. Generally, any Nosignal can be
discarded upon receipt unless no Backsignal is received by
the node, in which case the Nosignal must be returned.

Finally, the sender collects all returned reverse signals and
uses the intermediate nodes recorded in each Backsignal to
reconstruct the paths, which are then added to the sender’s
routing table. If the sender only receives Nosignal and no
Backsignal, it means that the shortest path between the sender
and receiver exceeds k. In this case, RCS can incrementally
increase the k£ value by 1 and re-execute the probing-based
path finding algorithm until paths are found. The network
diameter is defined as the maximum distance between any
two nodes. For a PCN network, the diameter is approximately
10 [21]. So the value of k£ will not be adjusted to a large value
in the worst case. Once the path is found, the sender resets k
to lmae for subsequent transaction path finding.

[ )
sl

Fig. 3: Probe the paths between S and T with k=5.

Loop Avoidance. During the probing process, the signal
may encounter a loop. The RCS protocol effectively prevents
signal transmission within such loops. Fig. 3 illustrates how
RCS achieves this. In this example, k=5, and there is a loop P-
O-@Q. When p reaches @Q via S-P-O-(Q, its current path length
is 3. The updated p is then forwarded to 7" but not to O and P,
because the signal transmission of RCS filters out the nodes
that p has visited. Therefore, p does not loop within the P-O-
( during signal transmission. Similarly, during signal return,
the signal follows the original path and also avoids loops.

C. Path Maximum Amount Calculation

After finding the path between the sender and the receiver
in the routing table, the path is suitable for the transaction if
the maximum transferable amount along it meets the sender’s
intended amount to send. In the following, we will explain
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how the RCS protocol determines whether sufficient funds are
available along the path.

EmEa) [ Eu)
A B

S T

Fig. 4: Transaction path S-A-B-T.

Consider the path S-A-B-T in Fig. 4, where S represents
the sender and 1" is the receiver of the transaction. Suppose
that the fee function of A on Cap is Fap = frase1 +a X 1.
Similarly, the fee function of B on Cpr is Fpr = frasea+a X
ro. If S completes the payment via this path, S must incur fees
for both A and B. Let p; represent the maximum transferable
amount on each channel: p;, ps and ps are the maximum
amounts for the channels S-A, A-B, and B-T, respectively.
The values of p; must satisfy the following equations:

p1+fbasel +m XT1+fba562 +p1 X1 =21 (2)

p2 + fba,seZ +p2 X 12 =123 (3)

D3 = Ts )
The values of p; can be calculated from the above equations:
P1 = (xl _fbascl _fbustﬁ)/(l'i_rl +T’2) (5)

P2 = (T3 — fbase2)/(1 + 7’2) (6)

P3 =5 (7

To successfully pay 7" an amount p along the path S-A-
B-T, p must satisfy p < min(p1, p2,p3). During the signal
transmission, the fee functions of the intermediate nodes are
recorded in the signal, allowing each node on the path to know
these fee functions based on the signal. Therefore, node A can
calculate p; and po, and B can calculate po and p3. Thus,
A knows that py = min(p;,p2) and B knows that pp =
min(ps, p3). To determine whether the path S-A-B-T' can
successfully execute the transaction, S, A, and B need only
to jointly verify if p < p4 and p < pp.

D. Transaction Execution

For each transaction, the sender can randomly select a path
from the routing table and collaborate with the intermediate
nodes to determine whether the funds are sufficient. If the
funds are sufficient, the path can be used for the transaction;
otherwise, the process is repeated. If all paths in the routing
table lack sufficient funds, it indicates that no path with a
length not exceeding k is suitable for the transaction. In this
case, k can be temporarily adjusted to find new paths as
described in Section III-B.

Mitigating channel balance exhaustion. When a common
criterion like “shortest-path-first” or “lowest-fee-first” is used
by all senders to decide the final transaction path, a number of
“high-quality” paths or channels would frequently be selected.
This practice could quickly exhaust the channel balance of
these paths, disrupting the connectivity of the entire PCN.
To mitigate this issue, we propose a randomized selection
approach that selects a path uniformly at random from the
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routing table. It ensures that different paths and channels have
an equal probability of being selected, preventing overuse of
some paths while others remain underused.

Handling concurrent requests. When multiple senders
use RCS at the same time and execute their transactions on
paths that share the same channels, a path collision occurs.
The randomized path selection of RCS can effectively reduce
the collision probability. In case collision still happens, RCS
adopts the solution proposed in prior works [9, 10, 18].
Specifically, the time that a transaction starts is used to
handle concurrent requests. The transaction that starts earlier is
assigned a higher priority. When multiple transactions compete
for the same channel, the transaction with higher priority gets
to use the available balance first. If a transaction fails due to
insufficient channel balance at run time, it immediately returns
a failure result rather than waiting for the balance to increase,
thereby avoiding deadlock. Upon failure, the sender selects
a new transaction path. In case all paths fail, the sender can
re-launch the path finding procedure.

IV. PRIVACY-PRESERVING DESIGN

This section presents the detailed design of the RCS+ proto-
col. RCS+ enhances RCS’s path maximum amount calculation
to preserve user privacy.

A. Adversary Model

Similar to existing privacy-preserving PCN designs [9, 17,
23], we assume a semi-honest adversary model, where adver-
saries adhere to the RCS protocol but attempt to infer private
information about other user nodes from the data exchanged
during protocol execution.

B. Privacy Goals

Similar to previous work [17, 23, 24], we consider the
following privacy goals in RCS+.

Transaction amount privacy: No adversary can learn the
total amount of transaction between uncompromised or honest
users. In other words, all nodes other than the transaction
sender and receiver cannot determine the transaction amount.

Available balance privacy: No adversary can determine
the balance available in a payment channel between uncom-
promised users. Only the nodes at two ends of the payment
channel know the current balance of their channel.

C. Key Ideas and Detailed Description

The path finding in RCS only relies on the public topology
of the network and thus does not affect transaction or balance
privacy. However, privacy leakage may occur when checking
if balances along candidate paths are sufficient. As discussed
in Section III-C, each intermediate node can independently
compute the minimum value Ppode.name Of the maximum
transferable amounts of the two channels it participates in
along the path, which does not compromise privacy. However,
intermediate nodes inevitably learn the plaintext transaction
amounts during the comparison process, leading to a leakage
of transaction amount. Furthermore, if the sender repeatedly
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queries intermediate nodes along the same path with different
transaction amounts (e.g., through binary search) before any
updates to channel balances occur, it may infer the exact
balance of a specific channel, compromising the privacy of
available balances. To address this, we adapt the secure com-
parison protocol OT-CMP proposed by Deevashwer Rathee et
al. [25] and construct the “L-bit-OT-CMP”. Based on it, we
design a secure path fund verification protocol RCS+.

Assume that the sender participating in the secure path funds
verification is s, and the n intermediate nodes are {7y, o, ...,
7y }. The sender s holds the transaction amount ps, while each
intermediate node 7; holds p,,. The goal is for s to securely
verify that p, does not exceed any p,, without revealing any
additional information. To achieve this, the s and each m; first
run a secure comparison protocol and then combine all results
to compute the final verification result. For comparisons, both
s and m; convert their values into ¢-bit unsigned integers. They
then securely compute a Boolean value 1{p,, < p,} with the
L-bit-OT-CMP protocol. If the comparison result is 0 (i.e.,
DPr; > ps) for all nodes, the path is confirmed to have sufficient
funds. Conversely, if any intermediate nodes has 1{p., < ps}
= 1, the path is considered to have insufficient funds.

In order to protect the comparison result a, the original OT-
CMP lets one participant generate a random bit or mask b and
the other participant holds a @ b. Therefore, the comparison
result is secretly shared by the two participants and known to
no one. To protect the individual comparison results between s
and all ; and enable their efficient combinations, we adapt the
OT-CMP to make the comparison result secretly shared with
two random L-bit binary numbers. Specifically, if the result is
0, the two participants would have two L-bit numbers whose
bit-wise XOR equals 0”; otherwise the bit-wise XOR equals
a random L-bit number other than 0%. The adaption can be
efficiently implemented by changing the random mask b L-bit,
and changing the comparison truth table’s encoding as above.
More details are presented in Algorithm 4.

As described in Algorithm 4, after executing L-bit-OT-CMP
with every 7;, s obtains the masked comparison result /¢, and
m; gets the random mask tempr,,. Both lt,, and tempr,, are
L bits long. For secure combinations of the comparison results,
starting from m,, each 7; computes the XOR of its random
mask and the received “combined mask”, and sends the new
combined mask to 7;_;. Finally, 71 knows a combined mask
that equals the XOR of all 7;s’ random masks, and send it to
s. s computes the XOR of its all masked comparison results
and the combined mask. If the result is L bits of zeros, the
path has sufficient funds; otherwise, the funds are insufficient.

The L-bit-OT-CMP protocol in RCS+ allows s and each
node 7; to obtain a random share of their comparison result.
Since the protocol hides the selection choice, the transaction
amount is hidden from intermediate nodes. Assuming nodes
7; are semi-honest and do not collude with sender s, it is
easy to see s cannot learn the specific values of 1{p,, < ps}
ensuring that the available balance privacy is preserved, and
verification has a false positive rate (i.e. the probability of
outputting positive when funds are insufficient) of only 2% as

well as a false negative rate of 0.

Algorithm 4 Secure path funds verification

Input: s holds ps, {71, ..., 7} holds {pxy, .., Pr, }

QOutput: s learns whether the funds on the path are sufficient.
1: function EXTEND(z, R)

2. if 2 == 0 then tempz +— 0"

3 else tempz < {0,1}7

4 return tempz

5: end function

6

7

8

9

: function L-bit-OT-CMP(F,, Py, x, y)
qg=4{¢/m and M = 2™

r=zq |l w0,y =yg—1 -+l %o
for j ={0,1,...,9q—1} do
B B | $ L

10: Py samples (lto ;) (€qoj)q <— {0,1}
11: for h ={0,1,...,M — 1} do
12: ssjn = (lto ;)7 ® EXTEND(1{z; < h}, L)
13: ttj.’h = <€QQ_’J'>0 (&) EXTEND(l {xj = h},L)
14: end for u
15: Py, and P, invoke (1> — OT; with the inputs

{ssj.n}n from Py and y; from Py. Py gets (Ito )y

16: Py, and P; invoke 1

{tt; n}n from Py and y; from P;. P; gets (eqoﬁj>f
17 end for
18:  fori={1,2,...,log q} do

]W) — OTy with the inputs

19: for j ={0,1,...,(¢/2") — 1} do
20: For b € {0,1}, P, invokes Fanyp Wwith inputs
B B B
<lti—1,2j>b and <€Qi_é’2j+1>b to get %utput (temg)b
21: Py sets <lti,j>b = <lti71,2j+1>b D <temp>b
22: For b € {0,1}, P, invokes Fanp with inputs

<eqi_1,2j>f and <€qi_1,2j+1>bB to get output (eqi,j)f
23: end for
24:  end for
25:  return P, gets L-bit random value (I¢;04 q70>0B, Py gets
(It10g q,0>f which has been randomized by (It;0g 4,0)
26: end function
27: procedure Main()

B
0

28:  for m; in {7y, ..., m,} do
29: call L-bit-OT-CMP(7;, S, px,;, Ps)
30: m; gets L-bit random value tempr,, and s gets It ,

which has been randomized by tempr,
31:  end for
32: tempr = tempry,
33:  for m; in {my_1, ..., ™1} do
34: tempr = tempr @ tempry,
35:  end for
36: 7 sends tempr to s
37: s calculates lt;, ®lt,, ®---
38: end procedure

@ ltr, O tempr

D. Privacy Analysis

We provide a short analysis explaining that RCS+ achieves
the privacy goals proposed in Section I'V-B.
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Transaction amount privacy. When determining whether
the path funds are sufficient, only the transaction sender knows
the transaction amount. The sender and the nodes use a
secure comparison protocol to compare the transaction amount
with the available funds. The security of secure comparison
protocols guarantees that nodes learn nothing more than the
comparison results they received by participating in the pro-
tocols. Since the results of L-bit-OT-CMP received by the
nodes are random masks chosen by themselves, the nodes
know nothing about the transaction amount. Thus, transaction
amount privacy is ensured.

Available balance privacy. The intermediate nodes use
their corresponding channel balances to calculate the maxi-
mum amount of fund that can pass through themselves. Same
to the transaction amount, the calculated values are protected
by the secure comparisons against the sender. Assuming the
nodes are semi-honest and do not collude with the sender, the
individual comparison result between any intermediate node
and the sender cannot be extracted due to the fact that only
the combined mask is revealed to sender, and only the random
masks are revealed to neighboring nodes. This guarantees that
1) the sender only knows all channels have sufficient funds
that are no less than the transaction amount if the verification
passes, and that the available balance of at least one unknown
channel is less than the transaction amount otherwise; 2) the
nodes knows nothing about others. This effectively protects
the available balance privacy of the nodes.

V. EXPERIMENTAL EVALUATIONS

In this section, we comprehensively evaluate and compare
the performance of RCS and RCS+ with other routing pro-
tocols. Specifically, our evaluation aims to investigate the
following aspects:

o Their performance in real-world networks.

o The impact of PCN evolution on their performance.

o The comparison of them with other outstanding protocols
on the above performance.

A. Experimental Setup

Simulator. We extend the simulator described in [10],
implementing our routing protocol, RCS and RCS+, and
simulate network by NetworkX [26] in Python. Focusing on
routing performance, we simplify the simulation of PCN by
omitting underlying security mechanisms, such as HTLC. In
our simulation, the network condition (e.g., topology and
available balances) changes dynamically as we simulate a
series of transactions chronologically. This allows our simula-
tions to more accurately reflect real-world conditions. While
failed transactions can be retried after being locked for a
period in PCNs, these inefficient retries are not considered
in our experiments. To minimize experimental variability and
randomness, we report the average results over 5 runs.

Topology. To evaluate the performance of routing protocols
in real networks, we conduct experiments using the data
from two real-world PCNs: Lightning and Ripple [27]. Their
actual topologies are obtained from [28] and [29] respectively.
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Lightning consists of 9,867 nodes and 38,390 channels, while
Ripple comprises 1,870 nodes and 17,416 channels. With
the collected data, we reconstruct the Lightning and Ripple.
Additionally, we simulate networks with varying numbers of
nodes using the Watts Strogatz graph [30], which accurately
represents PCN structures.

Workload. In PCNs, any node can act as the sender or
receiver of a transaction. To simulate transactions in the exper-
iment, two nodes are randomly selected to serve as the sender
and receiver for each transaction. For Lightning and Ripple
networks, the transaction amounts are randomly generated
based on the ranges derived from their respective channel
capacity data. In the simulated network, transaction amounts
are randomly generated according to ranges determined by its
total channel capacity.

Parameters. Based on the data collected from the Lightning
and Ripple, we determine the parameter l,,,, = 4 for each
network. According to the RCS protocol, the k-value for all
nodes is initially set to l,,,4... In rare cases where no transaction
path of length k£ or shorter exists or where such paths lack
sufficient funds, RCS or RCS+ incrementally increases k by 1
until a feasible path is found. Once the issue is resolved, k is
reset to Lnax for subsequent transactions. Therefore, in most
cases, all nodes maintain k = [, = 4.

Benchmarks. We evaluate and compare RCS and RCS+
with the following four notable routing protocols.

o Shortest Path: The sender selects the shortest path from
itself to the receiver and uses it to execute the transaction.
It is the core idea of the currently deployed routing
protocol LND in the Lightning network.

e SpeedyMurmurs [9]: It adopts the landmark routing ap-
proach, where landmark nodes identify paths. Transaction
amounts are then randomly distributed among these paths.

o Spider [11]: Each sender maintains k edge-disjoint widest
paths to each receiver. Transactions are split into units
for transmission. If a transaction-unit cannot be sent, it
is placed in a per-destination queue at the sender that is
served in LIFO order.

e Flash [10]: It categorizes transactions into mice and
elephant payments based on their amounts. For mice pay-
ments, each node uses the paths in its routing table. For
elephant payments, Flash designs a max-flow algorithm to
find multiple paths, then splits the transaction and selects
the lowest-fee path combination.

o Deter-Pay [19]: It probes only K paths among all feasible
ones, and completes the transaction if the total passable
amount across them exceeds the required payment.

Metrics. We use the following metrics to evaluate the
performance of protocols:

o Success ratio: The percentage of successfully completed
transactions among all generated transactions.

e Success volume: The total transaction amount of all
successfully completed transactions.

e Overhead: Regardless of whether the protocol probes to
find a path or checks for sufficient funds, users need to
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communicate. We quantify this overhead by counting the
number of messages transmitted.

The RCS+ protocol is a privacy-preserving extension of the
RCS protocol. It maintains the same success ratio and success
volume as RCS, but introduces additional overhead.
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Fig. 5: Success ratio in real-world networks.

B. Performance in Real-world Networks

Success ratio. Fig. 5 illustrates the success ratio of each
protocol with different numbers of transactions being executed
in both Lightning and Ripple. RCS and RCS+ outperform
all baselines in both networks. In Lightning, they achieve
a success ratio approximately 16% higher than Speedy-
Murmurs and 12% higher than Deter-Pay, and outperform
Shortest Path, Spider, and Flash by about 10%, 6%, and 4%,
respectively. In Ripple, their success ratio surpasses that of
Shortest Path and Deter-Pay by around 10%, SpeedyMurmurs
and Spider by 8%, and Flash by 3%. RCS and RCS+’s superior
performance is due to its pre-transaction verification of path
funds. As the number of transactions increases, the success
ratio of all protocols decreases since channel balances are
consumed and no new payment channels are added.
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Fig. 6: Success volume in real-world networks.

Success volume. Fig. 6 shows the changes in the success
volume of each protocol in Lightning and Ripple as the
number of transactions increases. Although the success ratio of
each protocol declines with more transactions, the total number
of completed transactions rises, resulting in an overall upward
trend in success volume. In both Lightning and Ripple, RCS
and RCS+ outperform all baselines in the success volume.
In Lightning, RCS and RCS+ have a success volume that is
2.1x that of SpeedyMurmurs, 1.7x that of Shortest Path, and
1.4x that of Spider and Deter-Pay, and are comparable to Flash.
The higher average channel capacity of Lightning allows for
more effective support of elephant payments compared to
Ripple. Flash employs “confirm-and-send” for large-amount
payments and splits transactions, enhancing its performance
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in large-amount transactions and boosting its success volume.
In Ripple, RCS and RCS+ similarly outperform Shortest Path,
SpeedyMurmurs, Spider and Deter-Pay, achieving about 1.6x
their success volumes, and surpass Flash by achieving 1.2x its
success volume.
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Fig. 7: Overheads

Overhead. Among the evaluated protocols, only RCS,
RCS+, Flash, Spider, and Deter-Pay require probing. We
compare their communication overheads on the Lightning and
Ripple networks. Fig. 7 shows that RCS consistently incurs
the lowest overhead on both networks, amounting to only
20% of Flash’s overhead, which is the highest among the
compared protocols, as the number of transactions increases
from 1,000 to 10,000. This efficiency stems from the fact
that most transactions occur between recurring sender-receiver
pairs, allowing RCS’s routing table to reduce repeated path
discovery. Although RCS+ incurs more communication due
to secure comparisons, its overhead remains low—only 30%
of Flash’s overhead.
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C. Performance in Network Evolution

Performance with different channel capacities. The over-
all channel capacity of PCNs is currently limited but is
expected to grow as PCNs evolve [21]. Following existing
work [9-11], we simulate this growth by expanding the current
channel capacity from 1x to 20x. The number of transactions
is fixed at 5,000. Fig. 8 shows the success ratio of each
protocol as network channel capacity changes. As the payment
channel balance increases, the success ratio of each protocol
improves. In both Lightning and Ripple, RCS and RCS+
consistently achieve the highest success ratio. Particularly
in the Lightning Network, their success ratio is approximately
20% higher than that of SpeedyMurmurs.

Performance with different number of nodes. As more
users join PCNs, the number of PCN nodes expands. Based on
the topology of the simulated network, we set l,,,4, to 6 for
RCS/RCS+ in our experiments. The number of transactions
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is fixed at 5000. Fig. 9 illustrates the success ratio of each
protocol as the number of network nodes varies from 10000
to 20000. The success ratio of all protocols remains relatively
stable, indicating their adaptability to an increasing number of
network nodes. Notably, RCS and RCS+ consistently achieve
the highest success ratio as the number of nodes grows.
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Fig. 9: Performance with different number of nodes.
VI. RELATED WORK

The primary motivation of our work is to design a novel
routing protocol that improves PCN performance while pre-
serving user privacy. In this section, we discuss related works.

Application of probing in PCN routing protocols. Several
probing-based protocols [10, 11, 18, 19], including ours, probe
to find transaction paths. Spider [11] employs dynamic routing
to select the optimal paths per transaction but incurs probing
overhead due to the fact that channel balances change after
each transaction, requiring probing paths for each transaction.
Flash [10] employs dynamic routing for elephant payments to
ensure high performance , while relying on pre-recorded paths
from the sender’s routing table for mice payments to reduce
overhead. EPA-Route [18] cuts probing overhead by pruning
the next hop of each probe at every hop. Deter-Pay [19] only
probes a subset of paths. If the total balance available on these
paths does not support the transaction, it continues to probe
the remaining paths. RCS lowers probing overhead by utilizing
routing tables and limiting the number of paths probed based
on network topology. The experimental results show that RCS
incurs lower overhead than other protocols.

Improvements in PCN routing performance. In current
PCNs, users in LND [15] attempt to pay along the short-
est path. This blind attempt reduces the transaction success
rate. Several protocols have been proposed to address the
issue. CoinExpress [16] employs the Ford-Fulkerson max-
flow algorithm for finding paths. FSTR [7] selects paths that
minimize fund inclination. cRoute [8] guides routing based
on network congestion gradients without computing specific
paths. Flash [10] adjusts the path-finding strategy according
to the transaction amount, improving the success rate and
controlling overhead. Spider [11] selects the & edge-disjoint
widest paths for transactions. Additionally, protocols like
Flash, Spider, Auto-tune [13] and SpeedyMurmurs [9] split
transactions to enhance performance but increase transaction
fees. Other works [31-33] focus on reducing payment fees
while maintaining routing performance.
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However, most existing routing protocols primarily employ
the “guess-and-check” strategy, meaning they cannot verify the
sufficiency of funds on the selected path before a transaction.
Verifying the availability of sufficient funds beforehand would
improve the transaction success rate, which called “confirm-
and-send”. But it requires checking all potential paths, which
is time-consuming. We optimize it to minimize the number of
paths that need to be verified for sufficient funds, calling it the
“refined confirm-and-send”. Based on this optimized strategy,
we proposed RCS, which maintains a reasonable path finding
overhead while achieving an excellent transaction success rate.

Privacy-preserving implementation in PCN routing pro-
tocols. Several proposals for privacy-preserving payments
utilize techniques such as zero-knowledge proofs [34], de-
centralized mixing [35] and secure multi-party computation
(SMPC) [36]. PrivPay [23] introduces the concepts of value
privacy and sender/receiver privacy. It enhances privacy by
employing trusted hardware on the central server, but its
scalability remains poor. SilentWhispers [17] utilizes SMPC
technology to protect privacy, but nodes must send messages to
each landmark node, resulting in large overall time overhead.
SpeedyMurmurs [9] and Sprite [37] surpass SilentWhispers in
terms of transaction efficiency but exhibit lower transaction
success rates compared to non-privacy-preserving protocols.
WebFlow [38] strikes a balance between low overhead and
a high transaction success rate but does not preserve the
available balance privacy. To address users’ privacy needs, we
introduce a secure comparison scheme and implement RCS+
that protects both transaction amount and available balance
privacy while maintaining excellent routing performance.

VII. CONCLUSION

In this work, we design RCS, a routing protocol that
employs the “refined confirm-and-send” strategy. The required
transaction paths are short based on the characteristics of
transaction paths in PCNs, and each user maintains their own
routing table to avoid repeated path-finding between the same
sender and receiver, thereby reducing overhead. Furthermore,
to address users’ strong privacy concerns, we implement RCS+
using a secure comparison protocol. Through simulations with
real-world and synthetic datasets, we demonstrate that RCS
and RCS+ outperform other routing protocols, especially in
terms of transaction success rate, while maintaining a reason-
able overhead. Additionally, the experimental results show that
RCS and RCS+ adapt well to the evolution of PCNs.
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